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1- Brief History and Epistemological Motivation 

Energy and entropy are basic concepts in thermodynamics and elsewhere. The concept of energy 

emerged in mechanics, the branch of physics which studies the motion of bodies and their causes. In 

contemporary physics, it appears in classical, relativistic and quantum mechanics. The concept of 

entropy emerged quite later than that of energy. It was introduced by Rudolf Julius Emmanuel 

Clausius around 1865 in order to further understand the roles of heat and work in thermodynamics. A 

decade later, Ludwig Eduard Boltzmann gave an interpretation of entropy in terms of the microscopic 

world – atoms, molecules, and their motion --, whose existence was at the time very controversial –  

in January 1897, at the Viennese Academy of Sciences, Mach brazenly lambasted Boltzmann with 

his sadly famous, and ignorant, “I do not believe that atoms exist!” --.   

 

------------------------------------------------ 

* Chapter of the book Complex Socio-Technical Systems – Understanding and Influencing Causality  
of Change, edited by William B. Rouse, Kenneth R. Boff and Penelope Sanderson (2011). 
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In great contrast, Josiah Willard Gibbs [1] supported and enriched Boltzmann ideas. The Boltzmann-

Gibbs (BG) (logarithmic) expression for the entropy (written here for the discrete case, as used by 

Claude Elwood Shannon) is  
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where W is the total number of configurations whose probabilities are { }ip . The conventional 

constant k is usually taken equal to the Boltzmann constant  Bk , or just to unity.
  

If all probabilities are 

equal, hence equal to 1/W, we have that  

                                           

ln ,BGS k W=
                                                                                                                       (2) 

the celebrated expression carved on Boltzmann´s gravestone in Vienna. We may check in this 

expression one of the most distinctive properties of entropy, namely that it characterizes the lack of 

information on the system. Indeed, when W increases, we loose information (about the precise 

configuration, or microscopic state, where the system is) and BGS  increases. When W=1, the entropy 

vanishes, reflecting the fact that we exactly know the state of the system. For fixed W, the BG entropy 

(1) increases from zero (corresponding to certainty about the microscopic state of the system) to its 

maximum value (2) (corresponding to full uncertainty, i.e., equal probabilities for all admissible 

microstates).  

The BG entropy stands at the foundation of statistical mechanics, one of the theoretical pillars of 

contemporary physics. This remarkable theory connects the laws of the microscopic world with those 

of the macroscopic one, i.e., thermodynamics. The BG entropy and statistical mechanics enable us to 

quite deeply understand a wide class of interesting and relevant systems, that we will from now on 

refer to as simple systems (although they can mathematically be extremely complicated!) By skipping  

a long and fascinating history, let us address now the so called complex systems. The typical 

characterizations of simple versus complex systems will be mentioned later on. The fact is that a 

possible generalization of the BG statistical mechanics was proposed in 1988 [2] on the basis of the 

following entropy:  
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We can verify that this entropy recovers the BG one as its q �1 limit (i.e., 1 BGS S= ). Therefore, we 

are talking of a generalization, not of an alternative to the BG theory. If all probabilities are equal, 

hence equal to 1/W, we obtain  
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If we consider two probabilistically independent systems A and B (i.e., such that 

, , ( , )A B A B

i j i jp p p i j+ = ∀ ), we straightforwardly verify that  
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In other words this q-entropy, as is sometimes referred to, is nonadditive unless q=1, in which case it 

is additive. Several other details on this nonadditive entropy, and the so called nonextensive 

statistical mechanics (which recovers the standard BG statistical mechanics for q=1) associated with 

it, can be found in [3,4].  

Let us address now the typical features of the so called simple ( 1q = ) and complex ( 1q ≠ ) systems.  

The q=1 systems typically (but not necessarily) exhibit the following properties: 

Short-range space-time correlations 

Markovian processes (short memory)  

Additive noise in Langevin-like mesoscopic equations 

Strong chaos (i.e., positive maximal Lyapunov exponent) 

Ergodic 

Euclidean geometry 

Short-range interactions in many-body systems 

Weakly quantum-entangled subsystems 

Linear and homogeneous Fokker-Planck mesoscopic equations 

Gaussian distributions 

Probability exponentially dependent on energy at thermal equilibrium (i.e., the BG weight) 

 

The 1q ≠  systems typically (but not necessarily) exhibit the following properties: 

Long-range space-time correlations 

Non-Markovian processes (long memory)  



Both additive and multiplicative noises in Langevin-like mesoscopic equations 

Weak chaos (i.e., vanishing maximal Lyapunov exponent) 

Nonergodic 

Multifractal (or similar hierarchical) geometry 

Long-range interactions in many-body systems 

Strongly quantum-entangled subsystems 

Nonlinear and/or inhomogeneous Fokker-Planck mesoscopic equations 

q-Gaussian distributions (i.e., asymptotic power-laws) 

Probability q-exponentially dependent on energy at stationary (or quasi-stationary) states (i.e.,     

asymptotic power-laws) 

 

All these features can be, and frequently are, used to characterize practically the degree of 

complexity of a system. Their deep cause is, however, quite simple in its essence. It has to do with 

the absence or presence of strong correlations between the (many) elements of the system. There 

are two basically different cases, which we address now. We focus on how the total number W of 

microscopic configurations increases with the total number N of elements of the macroscopic system.  

First possibility: 

                                 ( )    ( (1) 1; 1)NW N W Nµ µ> >>∼ ≃ ,                                                                      (7) 

which implies that  ( 1)  ( )W N W Nµ+ ∼ , which means that any new element which is added to the 

system makes the number W(N) of pre-existing possibilities to be multiplied by its own number µ  of 
individual possibilities. In other words, each of the pre-existing configurations is still possible and 

accommodates practically without change with each of the configurations of the newcomer.  This is 

the sign of a q=1 system. 

Second possibility:  

                                ( )    ( 0;  1)W N N Nρ ρ > >>∼ ,                                                                             (8) 

which implies that  ( 1)  ( )W N W Nµ+ << , which means that any new element which is added to the 

system makes the number W(N) of pre-existing possibilities to very mildly increase, sensibly less than 

multiplying by its own number µ  of individual possibilities. In other words, the pre-existing 
configurations are not possible any more, and new collective configurations emerge in the presence 

of the newcomer.  This is the sign of a 1q ≠  system. 

Other possibilities can of course exist in principle [for instance, ( ) (ln )   ( 0;  1)W N N Nδ δ > >>∼  or 

( )    ( 1;  0< 1;  1)NW N N
γ

µ µ γ∼ > < >> )], but the above two are the most simple and paradigmatic 

ones. 

 



How the entropy – which, as we said, characterizes the lack of information of the observer on the 

system -- enters into this discussion? As an unifying concept! Amazingly enough, it enters in order to 

satisfy the classical thermodynamical demand of extensivity, i.e., that ( )    ( 1)S N N N∝ >> ! Let us be 

more explicit. 

If we are facing the case ( ) NW N µ∼ , it follows from Eq. (2) that it is the BG entropy (q =1) which is 

extensive, since in this case we have that ( )BGS N N∝ . See Figure 1. 

If we are facing the case ( )W N N ρ
∼ , it follows from Eq. (5) that it is   (with 1 1 1)qS q ρ= − <  the 

entropy which is extensive, since in this case we have that 1 1 ( )S N Nρ− ∝ , as can be straightforwardly 

verified. See Figure 2. 
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Figure 1 – BG entropy as a function of the total number N of particles for Maxwell-Boltzmann (MB) 
statistics (i.e., all N particles are probabilistically independent, hence no quantum effects are present), 
Fermi-Dirac (FD) statistics (i.e., every single quantum state can be occupied by either zero or one 

particle, no more; consequently 10 N W≤ ≤ ), and Bose-Einstein (BE) statistics (i.e., every single 

quantum state can be occupied by an arbitrarily large number of particles; consequently 

1 1 10,  1,  2,  ...,  1,  ,  1,  ...N W W W= − + ). In the limit 1W → ∞ , the BG entropy is extensive in all cases. All 

these illustrations correspond to hypothesis (7). From [4], where further details can be seen. 
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Figure 2 - BG entropy and q -entropy as functions of the total number N of particles. The BG entropy 
is not extensive, whereas the q -entropy is so. This illustration corresponds to hypothesis (8). From 
[4], where further details can be seen. 

 

 

 

We should emphasize that, in spite of their innocuous aspect, the above statements carry together a 
sort of new paradigm, quite in the sense pointed by Thomas Samuel Kuhn [5]. Indeed, the concept of 
entropy has been taught during more than one century as being unique. More precisely, that the 
connection between Clausius thermodynamic entropy and the microscopic world is uniquely given by 
the BG entropy functional. We are here assuming that it is not so! We are assuming that it is the 
system which determines the entropic functional form to be used to make the bridge with the 
macroscopic world. This might seem strange at first sight. However, this uniqueness does not resist 
deeper analysis, and -- more important -- it does not resist confrontation with experimental data in 
what concerns its consequences. Definitively the BG entropy can only be understood nowadays as a 
first, most important, step, but not as the ultimate and unique scientific truth in what concerns entropy. 
The change of paradigm that the present approach involves might explain the curious fact that, 
although thousands of papers have been published by thousands of scientists (see the Bibliography 
in [6]) providing support, there are still some establishment scientists who apparently are against it. 

  

The whole thing is in fact quite simple and very analogous to the following problem. Let us consider 
the surface of a glass covering a table, assuming the surface to seen a simple plane. What is its 
volume? Clearly zero. What is its length? Clearly infinity. What is its area? A finite number, with 
physical units!, say square meters. It is the system which, through its geometry, which determines the 
useful question to be asked! We may ask about Lebesgue measures of all kinds, but the only one 



which is useful (and finite) is the area!  Suppose that we have now not a glassy surface but a fractal-
like object. What is the correct measure to ask? Clearly, the measure must be asked in terms of its 
Hausdorff (or fractal) dimension, again determined by the geometry of the system! As before, this is 
the only one which leads to a finite answer.  

This is precisely the idea behind the entropic index q. It is the system (through its microscopic 
probabilistic-dynamic nature) which determines what specific q-entropy to be fruitfully used. For a 
classical Hamiltonian system, if the corresponding microscopic nonlinear dynamics is ergodic, we 
must use the BG entropy to establish its connection with thermodynamics, in other words we must 
use the BG statistical mechanics. Indeed, the phase space region occupied during the time evolution 
of the system will have a finite Lebesgue measure. If, however, the system is nonmixing/nonergodic, 
we might be led to a zero Lebesgue measure occupancy of phase space, and consistently to a q-
entropy with a specific value of q, characterizing in fact not only that particular system, but an entire 
universality class of systems to which the specific system belongs. Probabilistic illustrations [7] as 
well as physical ones [8,9] are available in the literature which explicitly show this fact, namely that for 
special classes of systems, special values of q are to be used in order for the entropy to be extensive 
in the thermodynamic sense previously defined. If we were to use the BG entropy for these 

anomalous systems, whose elements are strongly correlated, we would obtain ( ) lnBGS N N∝ , which 

is in heavy contradiction with the thermodynamical requirement that ( )S N N∝ .  This contradiction 

satisfactorily disappears as soon as we use instead the q-entropy with the appropriate value of q (see 
Figure 3).                      
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 Figure 3 – q as a function of the inverse central charge 1/c, where q is such that ( )qS L  is extensive 

(i.e., ( )qS L L∝ ), as required by thermodynamics for d =1 systems. See details in [8] for the fully 



entangled (temperature T =0) pure magnetic chain with critical transverse field (it is ( ]0,1q∈ ), and in 

[9] for the random magnetic chain with no field (it numerically appears to be ( ],1q∈ −∞ ). In both 

examples, the entropy which is extensive approaches the BG one in the limit c→ ∞  (red dot). 

The present approach is summarized in Table 1, where we easily verify that entropic additivity and 

entropic extensivity are different properties, the former depending only on the mathematical functional 

form of the entropy, the latter depending on that form as well as on the specific system (more 

precisely on the nature of the correlations between its elements). Additivity and extensivity are 

different concepts, but the words are still used (wrongly) as synonyms by many scientists, because 

the systems that they have (inadvertently in most cases) in mind basically are those for which the 

confusion has no serious consequences. These are the so called simple systems. The distinction 

becomes, however, crucial when we focus on the so called complex systems. Such mistakes are 

recurrent in the history of Humanity: see an example in Figure 4.  

 

                     

EXTENSIVENONEXTENSIVE

Long-range 

interactions (QSS),

strongly entangled 

blocks, etc

NONEXTENSIVEEXTENSIVE

Short-range 

interactions,

weakly entangled 

blocks, etc

ENTROPY Sq (q<1)

(nonadditive)

ENTROPY SBG

(additive)

SYSTEMS

quarks-gluons, plasma, curved space ...? 

 

Table 1 – The BG entropy is additive, and the q-entropy is nonadditive. Whether they are extensive, 

as thermodynamically required, or not depends on the nature of the correlations between the 

elements of the system. Both notions coincide only for the standard systems that have been 

approached within the BG theory for more than one century. This is the cause of the current 

confusion apparently still present in the mind of many contemporary physicists. Further details can be 

seen in [4]. 
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Figure 4 – At the time of Thutmosis III, the Egyptian scientists referred to the North as “along the 

stream”, transparently meaning “along the stream of the (sacred) Nile”, which flows from South to 

North into the Mediterranean sea. But then the Pharaoh and its army invaded Mesopotamia, where 

they found the Euphrates, which flows more like North to South into the Persian Gulf. The motion of 

the stars did of course not show any sensible modification. This created a big confusion in the mind of 

the Egyptian scientists. Back to Egypt they included in the corresponding honoring obelisk the phrase 

“That strange river that, when you along the stream, you go against the stream”! The cause of the big 

confusion clearly was the fact that two totally different concepts – namely, the motion of the stars and 

the flows of rivers – were (wrongly) merged into a single concept. The annoying scientific confusion 

dissipated when they gradually encountered rivers other than the Nile. A change of paradigm in the 

sense of Kuhn had occurred!   

  

2 – Illustrative Applications to Complex Natural  
and Artificial Systems 

2.1 – Optimal Distribution of Probabilities 

 



Once we have a specific expression for the entropy, we can look for the probability distribution which 

extremizes it under appropriate constraints. This typically corresponds to a relevant stationary state 

(for example, thermal equilibrium if q =1). 

Let us illustrate this (variational) method with the continuous form of  the q -entropy, namely 
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If we extremize this functional by imposing the norm  ( ) 1dx p x =∫  as well as a constraint such as 

1  ( )dx x p x C=∫  (or something analogous), 1C  being a constant, we straightforwardly obtain 
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where β  is determined by the constant 1C , and the q –exponential function (inverse of the previously 

defined q –logarithmic function) is given by 
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with [ ]   if 0,  u u u
+

= > and zero otherwise. The admissible values of q must satisfy q < 2, so that the 

probability distribution (10) is normalizable.  

If instead of imposing a constraint on the first moment of p(x), we do it on the second moment, i.e., if 

we impose 
2

2  ( )dx x p x C=∫  (or something analogous), we obtain  
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Where β  is now determined by the positive constant 2C . This distribution is currently referred to as q 

–Gaussian since it recovers, for q =1, the celebrated Gaussian distribution. For q =2 it recovers the 

Cauchy-Lorentz distribution. The admissible values of q must satisfy q < 3, so that the probability 

distribution (12) is normalizable. These distributions constitute attractors in the sense of the Central 

Limit Theorem. If the large number of variables that are being summed are independent (or quasi-

independent in some sense), the attractor is a Gaussian. If the variables are strongly correlated in 

some specific sense (see [4]), then q >1, and the attractors are q -Gaussians. 

Distributions (10) and (12) exhibit power-law fat tails for q >1, and compact support for q <1. They 

both emerge very frequently in complex systems, as we illustrate in what follows. 

 

2.2 – Applications in Natural and Artificial Systems 

The motion of several micro-organisms and their cells has naturally evolved, along millennia, in such 

a way as being non-Gaussian, clearly in order to better achieve a satisfactory feeding and 



reproduction. The distribution of velocities consistently exhibits tails that are neatly fatter  than those 

of a Maxwellian distribution, typical of molecules in the air.  See in Figures 5 and 6 some illustrative 

examples, respectively Hydra viridissima [10] and Dictyostelium discoideum [11]. 

                   

q=1.5

1 mm

 

Figure 5 – The distribution of velocities of cells of Hydra viridissima is well fitted by a q –Gaussian 

with q =1.5. See details in [10]. 

                          

vegetative

q = 5/3
starved

q = 2

 

Figure 6 – The distribution of velocities of cells of Dictyostelium discoideum is well fitted by a q –

Gaussian with q =5/3 in the vegetative state and q =2 in the starved state. See details in [11]. 



Many phenomena occur in outer space whose complexity appears to be of the type addressed 

herein. Consequently functions such as the q-exponential and its extensions  frequently emerge in 

such obervations. This is the case of the flux of cosmic rays, along an extremely wide range of 

energies and fluxes: see Figure 7. 

 

                                       

Figure 7 – The distribution of fluxes of cosmic rays for a remarkably wide range of energies (along 13 

decades of energies, corresponding to 33 decades of flux!). The analytical (red) curve is a 

combination of hypergeometric functions and shows a crossover from a q-exponential with q =1.225 

to one with q =1.185. The Boltzmann curve (q =1; in blue) is shown for comparison. See details in 

[12]. 

Another example of nonextensive behavior is the fluctuations of the magnetic field in the plasma of 

the solar wind, as detected by Voyager 1 and Voyager 2. Let us briefly describe this empirical 

evidence. It was expected, due to theoretical considerations, that each nonextensive system would 

exhibit at least three different values for the index q, respectively corresponding to sensitivity to the 

initial conditions ( senq ), to relaxation ( relq ), and to the stationary state ( statq ). This is nowadays 

referred in the literature as the q-triplet or the q-triangle. It was first found in the data arriving to NASA 

from Voyager 1 [13], and since then it has been repeatedly verified and extended. The values found 

in that occasion were ,( , ) ( 0.6 0.2,  3.8 0.3,  1.75 0.06)sen rel statq q q = − ± ± ± . On the basis of some dual 

transformations (q�2-q, and q�1/q), they were conjecturally suggested [7] to be  

,( , ) ( 1 2 ,  4,  7 4)sen rel statq q q = − . See Figure 8. 

The presence of a q-triplet may be considered as a strong indication that the system is nonextensive 

in the sense herein, and that could therefore benefit from the available theoretical body to study such 

systems. Another example is constituted by the ozone layer around the Earth (see Figure 9). Indeed 



the width of this layer along the vertical above Buenos Aires has been recently addressed [14], and it 

was found that 

,( , ) ( 8.1 0.2,  1.89 0.2,  1.32 0.06)sen rel statq q q = − ± ± ±
 

The present examples, and some others, suggest what might be, for a wide class of systems, a 

generic property, namely   
1sen stat relq q q≤ ≤ ≤

 .  

 

                          

IHY 2007: VOYAGER 1: Fundamental Physics
The atmosphere of the Sun beyond a few solar radii, known as HELIOSPHERE, is fully 

ionized plasma expanding at supersonic speeds, carrying solar magnetic fields with it. 

This solar wind is a driven non-linear non-equilibrium system. The Sun injects matter, 

momentum, energy, and magnetic fields into the heliosphere in a highly variable way. 

Voyager 1 observed magnetic field strength variations in the solar wind near 40 AU 

during 1989 and near 85 AU during 2002. Tsallis’ non-extensive statistical mechanics, 

a generalization of Boltzmann-Gibbs statistical mechanics, allows a physical 

explanation of these magnetic field strength variations in terms of departure from 

thermodynamic equilibrium in an unique way:

 

            

Figure 8 – The q-triplet detected in the solar wind through the analysis of the fluctuations of its 

magnetic field. See details in [13]. This is a Poster prepared by United Nations and exhibited in 

Vienna at the launching ceremony for the International Heliophysical Year 2007. 



                         

OZONE LAYER HOLE

 

Figure 9 – The ozone layer is located 10-50 Km above the Earth. It absorbs 93-99% of the Sun´s 

high-frequency ultraviolet light. Image from Google.  

The CMS detector at the Large Hadron Collider (LHC) at CERN has recently produced the first 

results in physics. Proton-proton collisions at energies up to 7 TeV (the highest energy up to now 

produced by humankind for controlled collisions between elementary particles) produce hadronic jets 

whose transverse momentum distributions have been measured. They systematically are well fitted 

by q-exponentials with q close to 1.1 [15] (see Figure 10), and the same happens for collision 

experiments done at the Brookhaven Laboratories [16] (see Figure 11). The reasons for these facts 

remain elusive  nowadays, possibly to be clarified in terms of quantum chromodynamics (QCD), or 

some other similar theory. 

 



                    

q=1.15      

T=0.145

 

 

Figure 10 – Distributions of transverse momenta of the hadronic jets produced by proton-proton 

collisions in the LHC at energies of 0.9, 2.36, and 7 TeV, and detected by the CMS. From [15].  



              

  

Figure 11 – Distributions of transverse momenta of the hadronic jets produced by various collisions in 

Brookhaven, and the corresponding values for the index q and the temperature T. From [16]. 

  

It was predicted in 2003 [17] that the distribution of velocities of cold atoms in dissipative optical 

lattices should possibly be q-Gaussians with 
0

1 44 REq
U

= + , where RE  and 0U are parameters of the 

(mesoscopic) model. The prediction was computationally and experimentally verified in 2006 [18] 

(see Figure 12). 
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Figure 12 – Computational (left; quantum Monte Carlo) and experimental (right; Cs atoms) 

verifications of the q-Gaussian distributions of cold atoms velocities suggested in [17]. From [18]. 

 

As well known, the cells of biological tissues are very affected by radiation (e.g., the dangerous 

human melanoma). The survival fraction strongly depends on the radiation dose. A systematic study 

has recently been carried out [19], and the remarkable results can be seen in Figure 13. The authors 

conclude that their model can be used in hypofractionation radiotherapy treatments where current 

models cannot be applied.  
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Figure 13 – Survival fraction as a function of the dose D (relative to a reference dose). The data 

collapse (for different cells and different types of radiation) into a universal straight line exhibited in 

the lower panel is quite remarkable. From [19], where further details can be seen. 

 

Let us finally present some performant procedures for image processing [20,21,22]. They all improve 

on pre-existing methods: see Figures 14, 15 and 16. 



                       

Figure 14 – Using the q-entropy to improve segmentation in multiple sclerosis magnetic resonance 

images. The authors conclude that this procedure could be applied in clinical routine. From [20], 

where all details can be seen. 
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Figure 15 – Segmented medical images improved through use of the q-entropy. From [21], where 

further details can be seen. 



              
        

Figure 16 – Microcalcification detection technique applied to mammograms. The use of the q-entropy 

improves the detection of true positives from 80.21% to 96.55%, and decreases the detection of false 

positives from 8.1% to 0.4%. From [22], where further details can be seen. 

 

Many other applications to natural systems (trapped ions, spin-glass, dusty plasma, earthquakes, 

turbulence, astrophysical objects, cosmology, black holes, etc) and to artificial systems (signal 

processing, global optimization, computational algorithms, internetquakes, etc) are available in the 

literature (see [3,4]). We hope however that the present selection provides some intuition and  

knowledge concerning the applicability and potentialities of the concepts that we have been handling, 

on a unifying (entropic) background. 

  

3 – Illustrative Applications to Complex Socio-
Technical Systems 

Let us now address complex systems which include a substantial social component. We may start 

with economics and theory of finance. Given the long memory effects, and strong correlations, that 

characterize this area, it will be no surprise that q-statistics will be helpful in the discussion of many 

properties, such as distributions of price returns, volumes, wealth, land prices, risk function related 

with extreme values, volatility smile, among others. Some of these are illustrated in Figures 17, 18 

and 19.  
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Figure 17 – Cumulative distribution of traded volumes of VODAPHONE at the London Stock 

Exchange (Block market). The real data (black dots) are well fitted by the same analytical 

combination of hypergeometric functions  (red curve) that was used for cosmic rays [12]. From [23]. 

                        



Figure 18 – Distribution of one minute traded volumes of the Citygroup stocks at the New York Stock 

Exchange. From [24], where further details can be seen. 
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Figure 19 –  Distributions of price returns at the New York Stock Exchange for typical lag times. From 

short to long lag times q varies from close to 1.5 to 1. From [25], where further details can be seen. 

 

Let us now address a different area, namely that of (static or growing) networks made by nodes and 

links between them. The nodes can be people, computers, airports, and many other kind of elements. 

The links can be directed or not, all equal or not. Some of the nodes can have a large number of 

links, and those are referred to as hubs. A huge class of them is constituted by the so called scale-

invariant networks (strictly speaking, they are only asymptotically scale invariant). The probability of a 

node to have k links (with other nodes) is called the degree distribution. The number of links plays a 

role very analogous to the microscopic energy of a many-body physical system. Consequently, its 

degree distribution is in many cases given by the q-exponential function, where q depends on 

ingredients such as the range of interactions between nodes. A typical model is the Natal one [26]. 

This is a geographical preferential attachment growing model. Once a newcomer node is spatially 

fixed somewhere, its probability to (permanently) attach with the pre-existing site i is given by 

    ( 0)
A

i
A A

i

k
p

rα
α∝ ≥  , where ik is the degree of site i, and ir  is the geographical distance of the new 

comer to site i . A typical cluster realization is shown in Figure 20. The resulting degree distribution is 



shown in  Figures 21 and 22. It is worthy emphasizing that the distinctive feature of this model is that 

it might be more adequate to attach to somebody less powerful (i.e., with less links) but which is 

closer.   

               

Figure 20 –  A typical cluster with N=250 nodes, with 1Aα =  . From [26], where further details can be 

seen. 
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Figure 21 –  The resulting degree distribution P(k) (in log versus log at the left; q-log versus linear at 

the right). From [26], where further details can be seen. 
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Figure 22 –  The parameters  ( , )q κ  of Figure 21. From [26], where further details can be seen. 

 



Let us now exhibit a connection of q-statistics to linguistics. We briefly present here Zipf's law and its 

generalizations. If we rank the words of a book, or of various books, or of similar sets (e.g., spoken 

words in TV or analogous media), from the most frequent (rank s=1) to the less frequent (maximal 

value of s, coincident in fact with the size of the vocabulary) we roughly find Zipf’s law for the 

frequency of appearance f(s), namely ( )    ( 0),f s A s A= >  later generalized by Mandelbrot into 

what is sometimes referred to as Zipf-Mandelbrot law: 

                      
( ) 0

0

( )    ( 0;  0;  0).
A

f s A s
s s

ν ν= > > >
+

 

Let us remark that, with the notation changes 1 ( 1)qν = > , 01 ( 1)s q σ= −  and 0 0A s fν = , this 

expression can be rewritten in the q-exponential form 0 0( )     ( 0;  0;  1).q

sf s f e f qσ σ−= > > >  This 

form and its generalizations enable satisfactory description of one of the basic (quantitative) 

properties of all languages, namely the frequency of use of words (see Figures 23 e 24). 

  

                  
 

Figure 23 –  Rank frequency functions of various authors. It is quite remarkable the fact that the 

behavior is nearly universal. The same happens with other languages (e.g., Spanish, Italian, Greek): 

they all appear superimposed on practically the same single curve shown here. From [27], where 

further details can be seen.  

 



        
Figure 24 –  Rank frequency functions of plays (Shakespeare) and books (Dickens) fitted by the 

generalizations of the q-exponential function used for cosmic rays. From [27], where further details 

can be seen.  

 

Let us finally address a connection with cognitive psychology. In a learning/memory task, consisting 

in the memorization of a 5 x 5 matrix with binary symbols (see Figure 25), it was found [28] that 

computers governed by a nonextensive internal dynamics behave very similarly to humans (see 

Figure 26). The same fact was verified in the learning of languages [29]. This strongly supports the 

possibility that humans learn in an essentially  global manner (i.e., with 1q ≠ ). This would be the 

basis of the remarkable capacity of humans to do metaphors – of all things the greatest, in Aristotle´s 

words --, and which led to the characterization of Homo metaphoricus [28].     

 



                         
 
Figure 25 –  The 5 x 5 matrix that was learnt through successive exhibitions to the same person.   

See details in [28]. 

 

                                       

Figure 26 –  Average error curve for humans (black dots) and for a nonextensive computational 

algorithm (continuous curve). The agreement being reasonably satisfactory, we may say that, for this 

task, humans behave like a computer with global learning dynamics. See details in [28]. 

 

 



4 – Final Remarks 

 

We shall now summarize some of the points that we might have learnt along the various applications 

of the nonadditive entropy and its associated nonextensive statistical mechanics, as briefly described 

in the previous Sections. 

 

The focus of the present effort is on understanding and influencing causality of change of complex 

socio-technical systems. A nearly mandatory logical chain must therefore be followed. We must first 

understand how complex natural, artificial and social systems can be identified and characterized, 

essentially how they behave. Then, we must attempt to know why they do so. If we succeed in this 

nontrivial task, we will be at the level of the causes, and we will therefore be in position to understand 

their basic causality. Only then we might have the tools to change it, to determine influence on it. 

Finally, at the ethical endpoint, we must ask ourselves on whether we wish to do that, why, under 

what conditions, at what extent, with what purpose, and with what probability of success.  

 

Vast and intricate program! Nevertheless, on quite general grounds, some potentially useful hints do 

emerge from the analysis that we have undertaken here, along the unifying path offered by the 

concept of entropy. 

 

We can understand that almost uncorrelated N elements yield exponentially increasing (with N) 

possible collective configurations. They are many, but possibly uninteresting for high-level purposes. 

They are typical of thermal equilibrium, where things can blindly just be. In contrast, sensibly 

correlated elements yield only algebraically increasing (with N) possible collective configurations. 

They are less in number, but possibly with much larger probability of collective success. They are 

typical of quasi-stationary states where (slow but efficient) evolution is the protagonist. This is one 

deep sense that spouses interestingly the title From Being to Becoming of Ilya Prigogine´s book. 

 

The role of memory emerges as mostly relevant. Many considerably different possibilities can and 

ought to be considered between Edith Piaf´s Non, je ne regrette rien 7, Balayé, oublié, je me fous du 

passé  and Quebec´s Je me souviens.  

 

The use of metaphors – that amazing privilege of the Homo metaphoricus -- appears not only as 

possible but also as deeply efficient and fruitful in transposing one complex system into another. 

      

Creativity bridges fascination (of discovery) to knowledge (of its causes and consequences). Along 
this line we can give a new sense to Bernard Shaw´s The reasonable man adapts himself to the 
world: the unreasonable one persists in trying to adapt the world to himself. Therefore all progress 
depends on the unreasonable man.   Always however with the necessary touch of freedom: Si l’action 
n’a quelque splendeur de liberté, elle n’a point de grâce ni d’honneur, wrote Montaigne. 
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